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OUTLINE

Computational Geometry - how it fits in

Survey - recent work

A Computational Geometry Approach - current work

COMPUTATIONAL GEOMETRY

The design and analysis of algorithms and data

structures for the solution of geometric problems.
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WHY COMPUTATIONAL GEOMETRY

Complexity

Bounds

Robustness

"This program takes 2 minutes to generate a

grid for model X on workstation Y."

Questions:

Does the program always generate a grid?

How does the number of grid cells affect execution time?

What can be said about grid quality?
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"O"-Notation

A function T(n) is O(f(n)) is there exist constants

c and nosuch that for all n>no, T(n)<c f(n)

Delaunay Triangulation - O(n log n)

Shamos and Hoey- Divide and conquer

Fortune- Sweepline

Guibas, Knuth, Sharir- Randomized incremental

OPTIMALITY CRITERIA

The Constrained Delaunay Triangulation

minimizes the largest circumcircle

minimizes the largest min-containment circle

maximizes minimum angle

lexicographicaly maximizes list of angles, smallest to largest

minimizes roughness as measured by Sobolev semi-norm

guarantees a maximum principle

for the discrete Laplacian approximation
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OTHER OPTIMAL TRIANGULATIONS

Minimize max edge length - O(n2) Edelsbrunner, Tan

Greedy Triangulation - O(_)

Minimum weight triangulation

not known to be NP-complete

not known to be solvable in polynomial time

variant is NP-complete

approximations used

STEINER TRIANGULATION - RECENT RESULTS

Chew (89) - Range: [30 °, 120°]

size optimal among all uniform meshes

Baker, Grosse, Rafferty (88)- Range: [13°, 90']

aspect ratio < 4.6

Bern, Eppstein, Gilbert (90) - Range: [36°- 8(7]

aspect ratio < 5

Ruppert (93) - Range: [alpha, Pi-2 alpha]

< aspect ratio < i_n_,phal

size optimal within a constant Calpha
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HIGH ASPECT RATIO TRIANGULATIONS

Delaunay triangulation can be unsuitable for high aspect

ratio, body-conforming triangulations.

Robust, efficient, global algorithms are in need.

Computational geometers are not looking at this problem.

SKEWED STRUCTURED GRID
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DELAUNAY REALIZABILITY
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DELAUNAY ANGLE CUT-OFF vs. ASPECT RATIO
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CONVEX DISTANCE FUNCTIONS

Chew, 1985

Change the concept of circumcircle to that of a
convex distance function
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ISSUES

Generalize to a distance function which can

vary throughout the plane.

Avoid ambiguous cases.
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CONVEX BODY PROJECTION AND CONVEX HULL

Brown, 1979

Edelsbrunner, 1987

Project points from the plane to a paraboloid using parallel

projection.

Find the convex hull of the 3D point set (all points will be on the

convex hull).

The lower hull, projected back to the plane, will give the

Delaunay triangulation of the point set in the plane.

Notes: One convex body handles entire domain.

Shifting the body to a new location gives the same result.

CONVEX BODY PROJECTION AND CONVEX HULL

Brown, 1979

Edelsbrunner, 1987

%

%

I
I
i

I
i
i
!

i
w •

I

b, A&
P IW

.0

,i
'i

, i
/

v

300



STRETCHED TRIANGULATIONS

O

Step la: Model simple stretching.
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STRETCHED TRIANGULATIONS

Step lb: Design convex surface which will produce

desired stretched triangulation.
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STRETCHED TRIANGULATIONS

Note: Body will not be "shift invariant".
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Test data llse(l [or all examples.
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Circumshapes derived from paraboloid x _ + y2

Triangulation derived from paraboloid x 2 + y2

(Delaunay triangulation)
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Circumshapes derived from x 2 + 10y 2, (_ = 0.05

Triangulation derived from x 2 + 10y 2
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Circumshapes derived from x 2 + y4, _ = 0.02

Triangulation derived from x 2 + y4

305



° °
O,5

C) _ _1 ©

Circumshapes derived from x 4 + y4, _ = 0.02

v

Triangulation derived from x 4 + y4
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Circumshapes derived from x 3 + y3, _ = 0.09

Triangulation derived from x 3 + y3
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Circumshapes predicted from perspective projection, Zp_oj = -100, 5 = 0.05

Triangulation derived from perspective projection, Zproj = -100
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CONCLUSIONS

Benefits of computational geometry - guarantees of

grid quality

efficient algorithms

Many efficient triangulation algorithms are available,

but high aspect ratio triangulations are not among them.

Interdisciplinary cooperation will benefit grid generation

and computational geometry.
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